

 Navigation

 	
 index

 	
 next |

 	FIWARE Monitoring documentation

Welcome to FIWARE Monitoring

Introduction

Monitoring GE - TID Implementation is the key component to allow incorporating monitoring and metering mechanisms
in order be able to constantly check the performance of the system, but the architecture should be easily extended
to collect data for other required needs. Monitoring involves gathering operational data in a running system.
Collected information can be used for several purposes:

	Cloud users to track the performance of their own instances.

	SLA management, in order to check adherence to agreement terms.

	Optimization of virtual machines.

The monitoring system is used by different Cloud GEs in order to track the status of the resources. They use
gathered data to take decisions about elasticity or for SLA management. Whenever a new resource is deployed
in the cloud, the proper monitoring probe is set up and configured to start providing monitoring data.

The FIWARE Monitoring source code can be found here [https://github.com/telefonicaid/fiware-monitoring.git]

This documentation offers deeper information on FIWARE Monitoring.

Documentation

	FIWARE Monitoring

	User and Programmers Guide

	Installation and Administration Guide

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FIWARE Monitoring documentation

FIWARE Monitoring

[image: Build Status] [https://travis-ci.org/telefonicaid/fiware-monitoring] [image: Coverage Status] [https://coveralls.io/r/telefonicaid/fiware-monitoring]

This is the code repository for FIWARE Monitoring, the reference implementation
of the Monitoring GE.

This project is part of FIWARE [http://www.fiware.org]. Check also the
FIWARE Catalogue entry for Monitoring [http://catalogue.fiware.org/enablers/monitoring-ge-fiware-implementation].

Any feedback on this documentation is highly welcome, including bugs, typos
or things you think should be included but aren’t. You can use github issues [https://github.com/telefonicaid/fiware-monitoring/issues/new]
to provide feedback.

For documentation previous to release 4.4.2 please check the manuals at FIWARE
public wiki:

	FIWARE Monitoring - Installation and Administration Guide [https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Monitoring_-_Installation_and_Administration_Guide]

	FIWARE Monitoring - User and Programmers Guide [https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Monitoring_-_User_and_Programmers_Guide]

GEi overall description

FIWARE Monitoring is the key component to allow incorporating monitoring and
metering mechanisms in order be able to constantly check the performance of
the cloud infrastructure.

This involves gathering operational data in a running system, which usually
requires collecting data from heterogeneous sources. Besides, the monitoring
architecture should be easily extended to collect additional data for any
other required needs.

FIWARE Monitoring is agnostic to the framework used to gather monitoring
data. It just assumes there are several monitoring probes collecting
information, which somehow must be forwarded to an adaptation layer,
responsible for transforming data into a common representation (NGSI)
and publishing through a Context Broker (see Orion [https://github.com/telefonicaid/fiware-orion]).

Collected information can be used for several purposes:

	Cloud users to track the performance of their own instances.

	SLA management, in order to check adherence to agreement terms.

	Optimization of virtual machines.

Components

	Monitoring framework

	It is up to the infrastructure owner which tool (like Nagios [http://www.nagios.org/], Zabbix [http://www.zabbix.com/],
openNMS [http://www.opennms.org/], perfSONAR [http://www.perfsonar.net/], etc.) is installed for this purpose.

	Collector

	Framework-specific component to forward monitoring data being gathered
to the adaptation layer (i.e. NGSI Adapter). Monitoring GE provides a
Nagios loadable module NGSI Event Broker
as collector for such monitoring framework.

	Adaptation layer

	NGSI Adapter serves as generic adapter to
transform monitoring data from probes to NGSI context attributes.

Build and Install

The recommended procedure is to install using RPM packages in CentOS 6.x,
or DEB packages in Ubuntu 12.04/14.04 LTS. If you are interested in building
from sources, check this document.

Requirements

	System resources: see these recommendations.

	Operating systems: CentOS (RedHat) and Ubuntu (Debian), being CentOS 6.3 the
reference operating system.

	RPM/DEB dependencies: some required packages may not be present in official
repositories, or their versions are too old (for example, nodejs). In any
case, checking for such dependencies and configuration of alternative sources
is automatically managed by the package installation scripts when using the
proper tool (yum in CentOS or apt-get/gdebi in Ubuntu).

Installation

Using FIWARE package repository (recommended)

Refer to the documentation of your Linux distribution to set up the URL of the
repository where FIWARE packages are available (and update cache, if needed):

CentOS

http://repositories.testbed.fiware.org/repo/rpm/x86_64

Ubuntu

http://repositories.testbed.fiware.org/repo/deb

Then, use the proper tool to install the packages (this depends on monitoring
framework used in the cloud infrastructure, but at least NGSI Adapter will be
installed in any case):

CentOS

$ sudo yum install fiware-monitoring-ngsi-adapter

Ubuntu

$ sudo apt-get install fiware-monitoring-ngsi-adapter

Additionally, in case Nagios 3.4/3.5 and its probes (Nagios Plugins) are
being used as the framework to gather monitoring data, then we may install
the package fiware-monitoring-ngsi-event-broker (see Components above).

Using the RPM/DEB files

Download the package(s) from the FIWARE Files area [https://forge.fiware.org/frs/?group_id=7#title_cloud-monitoring] and use the proper
tool to install it. Take into account that you may need to manually install
dependencies, as some tools aren’t able to manage them when installing from
file:

CentOS

$ sudo rpm -i fiware-monitoring-ngsi-adapter-X.Y.Z-1.noarch.rpm
$ sudo rpm -i fiware-monitoring-ngsi-event-broker-X.Y.Z-1.x86_64.rpm

Ubuntu

$ sudo dpkg -i fiware-monitoring-ngsi-adapter_X.Y.Z_all.deb
$ sudo dpkg -i fiware-monitoring-ngsi-event-broker_X.Y.Z_amd64.deb

Upgrading from a previous version

Unless explicitly stated, no migration steps are required to upgrade to a
newer version of the Monitoring components:

	When using the package repositories, just follow the same directions
described in the Installation section (the install subcommand also
performs upgrades).

	When upgrading from downloaded package files, use rpm -U in CentOS, or
use same dpkg -i command in Ubuntu.

Running

As explained in the overall description section, there are a variety of
elements involved in the monitoring architecture, apart from those components
provided by this Monitoring GE (at least, an instance of Context Broker is
required and some underlying monitoring framework, such as Nagios). Please
refer to their respective documentation for instructions to run them.

From the Monitoring GE components, only NGSI Adapter runs as standalone server.
Once installed, there are two ways of running NGSI Adapter: manually from the
command line or as a system service (the latter only available if installed as
a package). It is not recommended to mix both ways (e.g. start it manually but
use the service scripts to stop it). This section assumes you are using the
system service (recommended): for the command line alternative, please refer
to this document.

In order to start the adapter service, run:

$ sudo service ngsi_adapter start

Then, to stop the service, run:

$ sudo service ngsi_adapter stop

We can also force a service restart:

$ sudo service ngsi_adapter restart

Configuration file

The configuration used by the adapter service is optionally read from the file
/etc/sysconfig/ngsi_adapter (in CentOS) or /etc/default/ngsi_adapter
(in Ubuntu):

ADAPTER_LOGFILE - Logging file
ADAPTER_LOGFILE=/var/log/ngsi_adapter/ngsi_adapter.log

ADAPTER_LOGLEVEL - Logging level
ADAPTER_LOGLEVEL=INFO

ADAPTER_LISTEN_HOST - The host where NGSI Adapter listens to requests
ADAPTER_LISTEN_HOST=0.0.0.0

ADAPTER_LISTEN_PORT - The port where NGSI Adapter listens to requests
ADAPTER_LISTEN_PORT=1337

ADAPTER_UDP_ENDPOINTS - UDP listen endpoints (host:port:parser,...)

ADAPTER_PARSERS_PATH - Path with directories to look for parsers
ADAPTER_PARSERS_PATH=lib/parsers/nagios

ADAPTER_BROKER_URL - The endpoint where Context Broker is listening
ADAPTER_BROKER_URL=http://127.0.0.1:1026/

ADAPTER_MAX_REQUESTS - Maximum number of simultaneous requests
ADAPTER_MAX_REQUESTS=5

ADAPTER_RETRIES - Maximum number of retries invoking Context Broker
ADAPTER_RETRIES=2

Most of these attributes map to options of the command line interface as follows:

	ADAPTER_LOGLEVEL maps to -l or --logLevel option

	ADAPTER_LISTEN_HOST maps to -H or --listenHost option

	ADAPTER_LISTEN_PORT maps to -p or --listenPort option

	ADAPTER_UDP_ENDPOINTS maps to -u or --udpEndpoints option

	ADAPTER_PARSERS_PATH maps to -P or --parsersPath option

	ADAPTER_BROKER_URL maps to -b or --brokerUrl option

	ADAPTER_MAX_REQUESTS maps to -m or --maxRequests option

	ADAPTER_RETRIES maps to -r or --retries option

Default values are found in /opt/fiware/ngsi_adapter/lib/common.js.

Checking status

In order to check the status of the adapter service, use the following command
(no special privileges required):

$ service ngsi_adapter status

API Overview

To transform monitoring data into NGSI attributes, probe raw data should be
sent as body of a POST request to the adapter, identifying the source entity
being monitored in the query fields.

For example, if using the check_load Nagios probe to measure CPU load,
then the request would look like:

curl "{adapter_endpoint}/check_load?id={myhostname}&type=host" -s -S --header 'Content-Type: text/plain' -X POST -d @- <<-EOF
OK - load average: 5.00, 7.01, 7.05|load1=5.000;10.000;10.000;0; load5=7.010;15.000;15.000;0; load15=7.050;30.000;30.000;0;
EOF

This would result in an invocation to Context Broker updating the context
of an entity of type host identified by myhostname with a new
attribute cpuLoadPct with value 5.00.

Please have a look at the API Reference Documentation section bellow and
at the programmer guide.

API Reference Documentation

	FIWARE Monitoring v1 (Apiary) [https://jsapi.apiary.io/apis/fiwaremonitoring/reference.html]

Testing

End-to-end tests

Please refer to the Installation and administration guide for details.

Unit tests

The test target is used for running the unit tests in both components of
Monitoring GE:

$ cd ngsi_adapter
$ grunt test

$ cd ngsi_event_broker
$ make test # synonym of standard 'check' target

Please have a look at the section building from source code in order to get more
information about how to prepare the environment to run the
unit tests.

Acceptance tests

In the following documents you will find a business readable description of the
features provided by the components of the Monitoring GE, as well as automated
tests for them:

	NGSI Adapter acceptance tests

Advanced topics

	Installation and administration
	Building from sources

	Running Adapter from command line

	Logs

	Resources & I/O Flows

	User and programmers guide
	NGSI Adapter custom probe parsers

	Retrieval of historical data

License

(c) 2013-2015 Telefónica I+D, Apache License 2.0

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FIWARE Monitoring documentation

User and Programmers Guide

Introduction

Welcome the User and Programmers Guide for the Monitoring Generic Enabler.
This GE is built up from different distributed components, as depicted in the
following figure:

[image: Monitoring GE architecture overview.]

Background and Detail

This User and Programmers Guide relates to the Scalability Manager GE which is
part of the Cloud Hosting Chapter [https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Cloud_Hosting_Architecture]. Please find more information about this
Generic Enabler in the following Open Specification [https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.Cloud.Monitoring].

User Guide

This GE does not provide an interactive user interface, hence there is no
User Guide. The following section elaborates on programmatic usage.

Programmer Guide

According to the architecture aforementioned, there are several APIs involved
in the monitoring process:

	NGSI Adapter API (HTTP)

	NGSI Adapter API (UDP)

	Context Broker API

	Monitoring (Query Manager) API

NGSI Adapter API (HTTP)

Probe raw data should be sent as body of a POST request to the adapter,
identifying the source entity being monitored in the query parameters.
For example, given the following scenario:

	Monitored host:	178.23.5.23

	Monitoring tool:

		Nagios

	Monitoring probe name:

		check_load

	NGSI Adapter endpoint:

		http://adapterhost:1337

then requests would look like:

HTTP POST http://adapterhost:1337/check_load?id=178.23.5.23&type=host
Content-Type: text/plain
OK - load average: 0.36, 0.25, 0.24|load1=0.360;1.000;1.000;0; load5=0.250;5.000;5.000;0; load15=0.240;15.000;15.000;0;

Please take into account that NGSI standard identify entities (in this case,
the resources being monitored) using a pair <entityId,entityType>. This
identification of the monitored resource has to be provided as the query
parameters id and type, respectively. The probe name included in
the URL lets NGSI Adapter know the originating monitoring probe, therefore
selecting the proper parser for it. This API is fully described in Apiary [https://jsapi.apiary.io/apis/fiwaremonitoring/reference.html].

Monitoring framework is expected to schedule the execution of probes and send
the raw data been gathered to the NGSI Adapter. Depending on the tool that has
been chosen, this would require the development of a custom component (a kind
of monitoring collector) to automatically forward such data to the
adaptation layer.

NGSI Adapter API (UDP)

In case UDP endpoints are defined (specifying the target parser to be loaded),
probe raw data should be sent as UDP request to the adapter. Such message is
expected to include both the id and the type of the NGSI Entity whose data is
about to be parsed.

NGSI Adapter parsers

NGSI Adapter processes requests asynchronously, trying to load a valid parser
named after the originating probe, located at any of the directories specified
(see Installation and Administration Guide). If probe
is unknown (parser not found), HTTP response status will be 404; otherwise,
response status will be 200, parser will be dynamically loaded, and then
its parseRequest() and getContextAttrs() methods will be called. The
attribute list returned by the latter will be used to invoke Context Broker.

Custom parsers for new probes may be easily added to NGSI Adapter, just
extending a base abstract object and implementing the aforementioned methods.
For example, suppose we want to support a new “myProbe” whose data is a
comma-separated list of values of two attributes myAttr0 and myAttr1:

[image: Probe parser class hierarchy.]

/**
 * module "myProbe" at any directory included in ADAPTER_PARSERS_PATH
 */

// @augments base parser (must redefine parseRequest and getContextAttrs)
var myParser = Object.create(null);

// @param Domain object including context, timestamp, id, type & body
myParser.parseRequest = function (reqDomain) {
 var reqDataContent = this.doSomeParsing(reqDomain.body);
 return { data: reqDataContent };
};

// @param EntityData object including data attribute
myParser.getContextAttrs = function (entityData) {
 var items = this.doMoreParsing(entityData.data);
 return { myAttr0: items[0], myAttr1: items[1] };
};

exports.parser = myParser;

Custom parsers for UDP request must also set the attributes entityId and
entityType of the input object reqDomain on return, given that such
information is part of the UDP message itself being parsed:

// @param Domain object
myParser.parseRequest = function (reqDomain) {
 var identification = this.doSomeParsing(reqDomain.body),
 reqDataContent = this.doMoreParsing(reqDomain.body);
 reqDomain.entityId = identification['id'];
 reqDomain.entityType = identification['type'];
 return { data: reqDataContent };
};

Context Broker API

Please refer to Context Broker documentation [https://github.com/telefonicaid/fiware-orion]. This will give us access
to the last updates of monitoring data available, but not to historical data.

Monitoring API

Retrieval of historical data stored at a distributed filesystem (e.g. Hadoop)
is handled by the Query Manager component, whose API is described in this
preliminary specification [https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Monitoring_Open_RESTful_API_Specification_(PRELIMINARY)].

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	FIWARE Monitoring documentation

Installation and Administration Guide

Introduction

This guide defines the procedure to install the different components that build
up the Monitoring GE, including its requirements and possible troubleshooting.

For general information, please refer to this document.

Installation

Monitoring infrastructure comprises several elements distributed across
different hosts, as depicted in the following figure:

[image: Monitoring components.]

	Probes gather raw monitoring data, which a Collector (for Nagios,
this is NGSI Event Broker) forwards to NGSI Adapter.

	NGSI Adapter, responsible for translating probe raw data into a
common format (NGSI).

	Parsers at NGSI Adapter, specific for the different probes that
generate monitoring data.

	Context Broker, where monitoring data (transformed into NGSI context
updates) will be published.

	Hadoop, for storing historical context data.

	Connector between Context Broker and data storage (for example, this
could be Cygnus).

Installation of probes

Monitoring GE is agnostic to the framework used to gather monitoring data. It
just assumes there are several probes collecting such data, which somehow will
be forwarded to the adaptation layer (NGSI Adapter).

It is up to the infrastructure owner which tool (like Nagios [http://www.nagios.org/], Zabbix [http://www.zabbix.com/],
openNMS [http://www.opennms.org/], perfSONAR [http://www.perfsonar.net/], etc.) is installed for this purpose.

Installation of collector

Probes must “publish” their data to NGSI Adapter. Depending on the exact
monitoring tool installed, a kind of collector has to be deployed in
order to send data to the adapter:

	NGSI Event Broker is an example specific for Nagios, implemented as
a loadable module. Description and installation details can be found
here.

Installation of NGSI Adapter

Requirements

NGSI Adapter should work on a variety of operating systems, particularly on the
majority of GNU/Linux distributions (e.g. Debian, Ubuntu, CentOS), as it only
requires a V8 JavaScript Engine to run a Node.js server.

Hardware Requirements

The minimal requirements are:

	RAM: 2 GB

Software Requirements

NGSI Adapter is a standalone Node.js process, so node and its package
manager npm should be installed previously. These requirements are
automatically checked when installing the fiware-monitoring-ngsi-adapter
package. However, for manual installation please visit NodeSource [https://github.com/nodesource/distributions/].

Downloads

Please refer to this document for details.

Additional parsers

NGSI Adapter currently includes a predefined set of parsers for Nagios probes
at lib/parsers/nagios directory, each named after its corresponding probe.

This can be extended with additional parsers found at additional directories.
To do so, please configure --parsersPath command line option (or set the
variable ADAPTER_PARSERS_PATH) with a colon-separated list of absolute (or
relative to Adapter root) directories where parsers are located.

Installation of Context Broker

Please refer to Orion [https://github.com/telefonicaid/fiware-orion/] documentation.

Installation of the connector

This component subscribes to changes at Context Broker and writes data into a
distributed filesystem storage (usually HDFS from Hadoop [http://hadoop.apache.org/]). Historically the
ngsi2cosmos connector implementation has been used (installation details
here [https://github.com/telefonicaid/fiware-livedemoapp#ngsi2cosmos]), although from March 2014 this component is deprecated and a brand new
Cygnus implementation (installation details here [https://github.com/telefonicaid/fiware-cygnus/]) is available.

Running the monitoring components

As stated before, there are a number of distributed components involved in the
monitoring. Please refer to their respective installation manuals for execution
details (this applies to probes & monitoring software, Context Broker, Hadoop,
etc.). This section focuses on NGSI Adapter specific instructions.

Running NGSI Adapter

Once installed, there are two ways of running NGSI Adapter: manually from the
command line or as a system service. It is not recommended to mix both ways
(e.g. start it manually but using the service scripts to stop it).

As system service

When installed from its package distribution, a Linux service ngsi_adapter
is configured (but not started). Please refer to this document for details.

From the command line

You can run the adapter just typing the following command at the installation
directory (usually /opt/fiware/ngsi_adapter/):

$ adapter

You can use these command line options (available typing adapter --help):

	
-l, --logLevel
	Verbosity of log messages

	
-H, --listenHost

		The hostname or address at which NGSI Adapter listens

	
-p, --listenPort

		The port number at which NGSI Adapter listens

	
-u, --udpEndpoints

		Optional list of UDP endpoints (host:port:parser)

	
-P, --parsersPath

		Colon-separated path with directories to look for parsers

	
-b, --brokerUrl

		The URL of the Context Broker instance to publish data to

	
-m, --maxRequests

		Maximum number of simultaneous outgoing requests to Context Broker

	
-r, --retries
	Number of times a request to Context Broker is retried, in case of error

Sanity check procedures

These are the steps that a System Administrator will take to verify that an
installation is ready to be tested. This is therefore a preliminary set of
tests to ensure that obvious or basic malfunctioning is fixed before proceeding
to unit tests, integration tests and user validation.

End to end testing

Use the commands of the monitoring framework being used (for example, Nagios)
to reschedule some probe execution and force the generation of new monitoring
data:

	Check the logs of the framework (i.e. /var/log/nagios/nagios.log) for
a new probe execution detected by the collector:

$ cat /var/log/nagios/nagios.log
[1439283831] lvl=INFO | trans=rdPmJ/uHE62a | comp=fiware-monitoring-ngsi-event-broker | op=NGSIAdapter | msg=Request sent to http://host:1337/check_xxx?id=xxx&type=host

	Check NGSI Adapter logs for incoming requests with raw data, and for the
corresponding updateContext() request to Context Broker:

$ cat /var/log/ngsi_adapter/ngsi_adapter.log
time=... | lvl=INFO | trans=rdPmJ/uHE62a | op=POST | msg=Request on resource /check_xxx with params id=xxx&type=xxx
time=... | lvl=INFO | trans=rdPmJ/uHE62a | op=POST | msg=Response status 200 OK
time=... | lvl=INFO | trans=rdPmJ/uHE62a | op=UpdateContext | msg=Request to ContextBroker at http://host:1026/...

	Finally, query Context Broker API to check whether entity attributes have
been updated according to the new monitoring data (see details here [https://github.com/telefonicaid/fiware-orion/])

List of Running Processes

A node process running the “adapter” server should be up and running, e.g.:

$ ps -C node -f | grep adapter
fiware 21930 1 0 Mar28 ? 00:06:06 node /opt/fiware/ngsi_adapter/adapter

Alternatively, we can check if service is running, e.g.:

$ service ngsi_adapter status
* ngsi_adapter is running

Network interfaces Up & Open

NGSI Adapter uses TCP 1337 as default port, although it can be changed using
the --listenPort command line option.

Additionally, a list of UDP listen ports may be specified by --udpEndpoints
command line option.

Databases

This component does not persist any data, and no database engine is needed.

Diagnosis Procedures

The Diagnosis Procedures are the first steps that a System Administrator will
take to locate the source of an error in a GE. Once the nature of the error is
identified with these tests, the system admin will very often have to resort to
more concrete and specific testing to pinpoint the exact point of error and a
possible solution. Such specific testing is out of the scope of this section.

Resource availability

Although we haven’t done yet a precise profiling on NGSI Adapter, tests done in
our development and testing environment show that a host with 2 CPU cores and
4 GB RAM is fine to run server.

Remote service access

	Probes at monitored hosts should have access to NGSI Adapter listen
port (TCP 1337, by default)

	NGSI Adapter should have access to Context Broker listen port (TCP 1026,
by default)

	Connector should have access to Context Broker listen port in order
to subscribe to context changes

	Context Broker should have access to Connector callback port to notify
changes

Resource consumption

No issues related to resources consumption have been detected neither with
the NGSI Adapter server nor with the NGSI Event Broker loaded as a “pluggable”
module on Nagios startup.

I/O flows

Figure at installation section shows the I/O flows among the different
monitoring components:

	Probes send requests to NGSI Adapter with raw monitoring data, by means
of a custom collector component (for example, NGSI Event Broker)

	NGSI Adapter sends request to Context Broker in terms of context
updates of the monitored resources

	Context Broker notifies Connector with every context change

	Connector writes changes to storage

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	FIWARE Monitoring documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 _static/up-pressed.png

_static/comment.png

ngsi_event_broker/README.html

 Navigation

 		
 index

 		FIWARE Monitoring documentation »

NGSI Event Broker

Nagios event broker (NEB [http://nagios.sourceforge.net/download/contrib/documentation/misc/NEB%202x%20Module%20API.pdf]) module to forward plugin data to NGSI Adapter. Currently, the broker is particularized for
XIFI [https://www.fi-xifi.eu/home.html] monitoring:

		ngsi_event_broker_xifi to process plugin executions for XIFI

Installation

The module is an architecture-dependent compiled shared object distributed as
a single library bundled in an Ubuntu (.deb) or CentOS (.rpm) package.

Please refer to this document for details.

Usage

Nagios should be instructed to load this module on startup. First, stop Nagios
service and then edit configuration file at /etc/nagios/nagios.cfg to add
the new broker module with its arguments: the id of the region [http://docs.openstack.org/glossary/content/glossary.html#region] that current
infrastructure belongs to, and the endpoint of NGSI Adapter component to
request:

event_broker_options=-1
broker_module=/path/ngsi_event_broker_xifi.so -r region -u http://host:port

The module will use such information given as arguments together with data taken
from the Nagios service definition [http://nagios.sourceforge.net/docs/3_0/objectdefinitions.html#service] to issue a request to NGSI Adapter. In
many cases, service definitions need no modifications and the broker just works
transparently once Nagios is restarted. But there are some scenarios requiring
slight changes in those service definitions (see below).

Once main configuration file and service definitions have been reviewed, then
start Nagios service. Check log files for module initialization (may fail for
missing arguments, for example). Also check that requests are sent to Adapter
server in response to plugin executions.

Service definitions

Assuming this Nagios host definition:

define host{
 use linux-server
 host_name myhostname
 alias linux_server
 address 192.168.0.2
 }

then a typical Nagios service definition would look like this:

define service{
 use generic-service
 host_name myhostname
 service_description my service description
 check_command check_name!arguments
 ...
 }

Depending on the entities being monitored (thus depending on the kind of plugins
used), some of these data items are taken and some additional may be required.
Requests to NGSI Adapter issued by this broker will all follow the pattern
http://{host}:{port}/{check_name}?id={region}:{uniqueid}&type={type}, where:

		http://{host}:{port} is the endpoint taken from broker arguments

		{check_name} is taken from Nagios command specified at service definition

		{region} is taken from broker arguments

		
		{uniqueid} is taken from service definition, depending on the command

		plugin

		
		{type} is also taken from service definition, also depending on the

		command

For SNMP monitoring a Nagios command named check_snmp should be used.
Entity type interface is assumed by default and {uniqueid} consists
of the address and port number given as command arguments (see check_snmp
manpage). Entity id in requests would be {region}:{ifaddr}/{ifport}

For host service monitoring there are no restrictions on the command names
and the plugins to be used. The {uniqueid} consists of the hostname and
description of the service, resulting an entity id
{region}:{hostname}:{servicedesc}. However, the exact entity type must be
explicitly given with a custom variable _entity_type at service definition
(or using templates, as follows):

define service{
 use generic-service
 name host-service
 _entity_type host_service
 }

define service{
 use host-service
 host_name myhostname
 service_description my service description
 check_command check_name!arguments
 ...
 }

For any other plugin executed locally the entity id will include the local
address and a host entity type will be assumed, resulting a request like
http://{host}:{port}/{check_name}?id={region}:{localaddr}&type=host

For any other plugin executed remotely via NRPE the entity id will include
the remote address instead, a vm entity type will be assumed and the
{check_name} will be taken from arguments of check_nrpe plugin.

Default entity types may be superseded in any case by including in the service
definition the aforementioned custom variable _entity_type.

Changelog

Please refer to FIWARE Monitoring releases changelog [https://github.com/telefonicaid/fiware-monitoring/releases].

License

(c) 2013-2015 Telefónica I+D, Apache License 2.0

 © Copyright .
 Created using Sphinx 1.3.1.

_static/minus.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

doc/manuals/admin/build_source.html

 Navigation

 		
 index

 		FIWARE Monitoring documentation »

Building from sources

Monitoring GE reference distributions are CentOS 6.x and Ubuntu 12.04. This
doesn’t mean that it cannot be built for other Linux distributions (actually,
it can). This section includes indications about the build process for almost
any distribution.

CentOS 6.x

NGSI Adapter

This component needs no compilation, as it is a server written in Node.js, so
the basic procedure consists basically on installing the node interpreter,
getting the sources and installing the required dependencies (assuming you
don’t run commands as root, we use sudo for those commands that require
some special privileges):

		Install an updated node interpreter:

$ curl -sL https://rpm.nodesource.com/setup | sudo bash -
$ sudo yum install -y nodejs

		Install development tools:

$ sudo yum install -y gcc-c++ make rpm-build redhat-rpm-config
$ sudo npm install -g grunt-cli

		Get the source code from GitHub:

$ sudo yum install -y git
$ git clone https://github.com/telefonicaid/fiware-monitoring

		Install dependencies:

$ cd fiware-monitoring/ngsi_adapter
$ npm install

		(Optional but highly recommended) check coding style, run unit tests and
get coverage:

$ grunt lint test coverage

		At this point, we are ready to run the server manually:

$./adapter

		Alternatively, we could create a package for this component, install it and
then run the ngsi_adapter service:

$ cd fiware-monitoring/ngsi_adapter
$ tools/build/package.sh
$ sudo rpm -i fiware-monitoring-ngsi-adapter-X.Y.Z-1.noarch.rpm
$ sudo service ngsi_adapter start

NGSI Event Broker

This component is written in C language and requires autotools to generate
a valid Makefile to drive the build and install process.

		Install development tools:

$ sudo yum install -y gcc-c++ make autoconf automake libtool
$ sudo yum install -y cppunit-devel cppcheck lcov libxslt libcurl-devel wget
$ sudo yum install -y rpm-build redhat-rpm-config
$ sudo pip install -q gcovr

		Get Nagios 3.x sources (only some headers are actually needed):

$ cd fiware-monitoring/ngsi_event_broker
$ NAGIOS_VERSION=$(awk -F= '/nagios_reqver=/ { print $2 }' configure.ac)
$ NAGIOS_FILES=http://sourceforge.net/projects/nagios/files
$ NAGIOS_URL=$NAGIOS_FILES/nagios-${NAGIOS_VERSION%%.*}.x/nagios-$NAGIOS_VERSION/nagios-$NAGIOS_VERSION.tar.gz/download
$ NAGIOS_SRC_DIR=nagios
$ wget $NAGIOS_URL -q -O nagios-${NAGIOS_VERSION}.tar.gz
$ tar xzf nagios-${NAGIOS_VERSION}.tar.gz
$ (cd $NAGIOS_SRC_DIR && ./configure && make nagios)

		Configure for debug build with coverage support:

$ mkdir -p m4 && autoreconf -i
$./configure --enable-gcov --with-nagios-srcdir=$NAGIOS_SRC_DIR

Default installation directory is /opt/fiware/ngsi_event_broker/lib but
this may be changed by adding the --libdir=target_libdir option when
running the configure script.

		Compile and check coding style, run unit tests and get coverage (optional but
highly recommended):

$ make clean lint test coverage

		Install the generated module (a dynamic library):

$ make install

		Alternatively, we could create a package for this component (which implies
building and running the unit tests), and install it:

$ cd fiware-monitoring/ngsi_event_broker
$ tools/build/package.sh
$ sudo rpm -i fiware-monitoring-ngsi-event-broker-X.Y.Z-1.noarch.rpm

Ubuntu

The steps are the same as in CentOS, with only a few changes:

NGSI Adapter

		Install an updated node interpreter:

$ curl -sL https://deb.nodesource.com/setup | sudo bash -
$ sudo apt-get install -y nodejs

		Install development tools:

$ sudo apt-get install -y g++ make dpkg-dev debhelper devscripts
$ sudo npm install -g grunt-cli

NGSI Event Broker

		Install development tools:

$ sudo apt-get install -y g++ build-essential make autoconf automake autotools-dev libtool
$ sudo apt-get install -y libcppunit-dev cppcheck lcov xsltproc libcurl4-openssl-dev wget
$ sudo apt-get install -y dpkg-dev debhelper devscripts
$ sudo pip install -q gcovr

Other distributions

Again, the steps are the same as in CentOS. We only have to pay attention to
the way to install node (see NodeSource [https://github.com/nodesource/distributions] for details) and to the possible
different package names of the development tools.

 © Copyright .
 Created using Sphinx 1.3.1.

ngsi_adapter/test/acceptance/README.html

 Navigation

 		
 index

 		FIWARE Monitoring documentation »

NGSI Adapter acceptance tests

This project contains the NGSI Adapter acceptance tests (component, integration
and E2E testing). All test cases have been defined using Gherkin [https://github.com/cucumber/cucumber/wiki/Gherkin], that it is a
Business Readable, Domain Specific Language that lets you describe software’s
behaviour without detailing how that behaviour is implemented. Gherkin has the
purpose of serving documentation of test cases.

Test case implementation has been performed using Python [http://www.python.org/] and Lettuce [http://lettuce.it/].

Acceptance Project Structure

├───acceptance
│ ├───commons
│ ├───features
│ │ ├───component
│ │ │ └───send_data
│ │ ├───e2e
│ │ └───integration
│ ├───resources
│ │ └───probe_sample_data
│ └───settings
│

FIWARE Monitoring Automation Framework

Features:

		Lettuce-Tools support

		Settings using json files and Lettuce-Tools utility

		Test report using Lettuce-Tools XUnit output

		NGSI Adapter Client

		Logging

		Remote NGSI Adapter log capturing

		Test data management using templates (resources)

Acceptance tests execution

Execute the following command in the test project root directory:

$ cd ngsi_adapter/src/test/acceptance
$ lettuce_tools -ft send_data_api_resource -ts comp -sd features/ --tags=-skip -en dev

With this command, you will execute:

		Components test cases in the “Development” environment configured in file
settings/dev-properties.json

		The “send_data_api_resource” feature

		Skipping all scenarios tagged with "skip"

Prerequisites

		Python 2.7 or newer (2.x) (https://www.python.org/downloads/)

		pip (https://pypi.python.org/pypi/pip)

		virtualenv (https://pypi.python.org/pypi/virtualenv)

		NGSI Adapter from FIWARE Monitoring (download sources [https://github.com/telefonicaid/fiware-monitoring/])

Test case execution using virtualenv

		Create a virtual environment somewhere:

$ virtualenv $WORKON_HOME/venv

		Activate the virtual environment:

$ source $WORKON_HOME/venv/bin/activate

		Go to the acceptance tests folder in the project:

$ cd ngsi_adapter/src/test/acceptance

		Install requirements for the acceptance tests in the virtual environment:

$ pip install -r requirements.txt --allow-all-external

Test case execution using Vagrant (optional)

Instead of using virtualenv, you can use Vagrant [https://www.vagrantup.com/] to deploy a local VM from
the given Vagrantfile, providing all environment configurations to launch the
test cases.

As a prerequisite, first download and install Vagrant
(https://www.vagrantup.com/downloads.html)

		Go to the acceptance tests folder in the project:

$ cd ngsi_adapter/src/test/acceptance

		Launch a VM from the provided Vagrantfile:

$ vagrant up

		After Vagrant provision, your VM is properly configured to launch acceptance
tests. You have to access the VM and change to the Vagrant directory mapping
the test/acceptance workspace:

$ vagrant ssh
$ cd /vagrant

For more information about how to use Vagrant, please check this document [https://docs.vagrantup.com/v2/getting-started/index.html].

Settings

Before executing the acceptance tests, you will have configure the properties
file settings/dev-properties.json and setup the attributes to run the
acceptance tests on the experimentation environment.

You will also need a valid private key (private_key_location) to connect to
NGSI Adapter host to capture remote logs. This way you will be able to execute
scenarios that require the logs capturing for test validations.

 © Copyright .
 Created using Sphinx 1.3.1.

doc/README.html

 Navigation

 		
 index

 		FIWARE Monitoring documentation »

Overview

What you get

Monitoring GE - FIWARE Implementation is the key component to allow
incorporating monitoring and metering mechanisms in order be able to
constantly check the performance of the system, but the architecture should
be easily extended to collect data for other required needs. Monitoring
involves gathering operational data in a running system. Collected information
can be used for several purposes:

		Cloud users to track the performance of their own instances.

		SLA management, in order to check adherence to agreement terms.

		Optimization of virtual machines.

The monitoring system is used by different Cloud GEs in order to track the
status of the resources. They use gathered data to take decisions about
elasticity or for SLA management. Whenever a new resource is deployed in the
cloud, the proper monitoring probe is set up and configured to start providing
monitoring data.

Why to get it

Monitoring GE - FIWARE Implementation is the monitoring platform to be used
in the FIWARE Cloud ecosystem in order to monitoring and metering virtual
resources. This middleware unify the monitoring and metering solution,
providing the following advantages:

		Full FIWARE integrated solution

This component is integrated with the architecture deployed in the FIWARE
and you do not need to do extra work in order to integrate the solution with
the rest of Generic Enabler implementation.

		Non-intrusiveness on resource functionality and performance

The Monitoring system not affect the rest of resource functionality nor
performance.

		Deal with metric heterogeneity

The Monitoring system deals with different kind of metrics (infrastructure,
KPI, applications and product metrics), different virtualization
technologies, different products, applications, etc.

		Scalability in monitored resources

The system scales to large numbers of monitored nodes and resources.

		Service Aggregation

The framework aggregates the monitoring information collected at
application/service level, which means that it aggregates metrics from
virtual machines or hardware resources at service level.

Documentation

		User and Programmers Guide

		Installation and Administration Guide

See also

		Monitoring Federation Infrastructure [http://www.slideshare.net/flopezaguilar/monitoring-federation-open-stack-infrastructure]

This presentation summarises the development of this component as a joint
task between FIWARE and XIFI projects.

 © Copyright .
 Created using Sphinx 1.3.1.

doc/manuals/admin/logs.html

 Navigation

 		
 index

 		FIWARE Monitoring documentation »

Logs

The log system has been re-worked in release `4.1.1`__. This section describes
its main characteristics.

Log file

The NGSI Adapter component of Monitoring GE writes logs, when running as a
service, to the file /var/log/ngsi_adapter/ngsi_adapter.log (if started
manually from command line, logs are written to standard output).

The NGSI Event Broker component is a module integrated into the Nagios
framework and its logs are written to the file /var/log/nagios/nagios.log
(or any other defined by Nagios configuration).

Log format

The log format is designed to be processed by tools like Splunk [http://www.splunk.com/] or Fluentd_.

Each line in the log file is composed by several key-value fields, separated
by the pipe character (|). Example:

time=2015-08-01T08:00:00.511Z | lvl=INFO | trans=ci2627bx00000b42g8m2pxw3z | op=POST | msg=Request on resource /check_xxx with params id=xxx&type=xxx
time=2015-08-01T08:00:00.675Z | lvl=INFO | trans=ci2627bx00000b42g8m2pxw3z | op=POST | msg=Response status 200 OK
time=2015-08-01T08:00:00.922Z | lvl=INFO | trans=ci2627bx00000b42g8m2pxw3z | op=UpdateContext | msg=Request to ContextBroker at http://host:1026/...

These are the different fields found in each line:

		time. A timestamp corresponding to the moment in which the log line was
generated.

		lvl (level). One of the following:
		INFO: This level designates informational messages that highlight the
progress of the component.

		WARNING: This level designates potentially harmful situations. There is
a minor problem that should be fixed.

		ERROR: This level designates error events. There is a severe problem that
should be fixed.

		FATAL: This level designates very severe error events that will presumably
lead the application to abort. The process can no longer work.

		DEBUG: This level designates fine-grained informational events that are
most useful to debug an application.

		trans (transaction id). Can be either “N/A” (for log messages “out of
transaction”, as the ones corresponding to startup) or a unique string id.

		op (operation). The function in the source code that generated the log
message. This information is useful for developers only.

		msg (message). The actual log message.

Log rotation

The system administrator must configure some log rotation mechanism, or
otherwise the log file size will increase indefinitely. We recommend using
logrotate_.

Depending on your expected work load, you would need to adjust the rotation
parameters.

,. _Fluentd: http://www.fluentd.org/
.. _logrotate: http://linux.die.net/man/8/logrotate
.. _FIWARE Monitoring release 4.1.1: https://github.com/telefonicaid/fiware-monitoring/releases/tag/v4.1.1

 © Copyright .
 Created using Sphinx 1.3.1.

_static/file.png

search.html

 Navigation

 		
 index

 		FIWARE Monitoring documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

ngsi_adapter/README.html

 Navigation

 		
 index

 		FIWARE Monitoring documentation »

NGSI Adapter

Generic adapter to transform monitoring data from probes to NGSI context
attributes, and forward them through a NGSI Context Broker.

Installation

Please refer to this document for details.

Usage

Please refer to this document for details.

Changelog

Please refer to FIWARE Monitoring releases changelog [https://github.com/telefonicaid/fiware-monitoring/releases].

License

(c) 2013-2015 Telefónica I+D, Apache License 2.0

 © Copyright .
 Created using Sphinx 1.3.1.

_static/plus.png

_static/down.png

_static/ajax-loader.gif

_images/Monitoring_Architecture.png
Visualization Portal

Cloud Portal

Apps & Senvices.

I Monitoring GE

SEEERRRERRDDDa

AuthZ & AuthN

Security Proxy.

Access Control GE

owmer [H-O—]
pr——
o
Srsm tfam)
™
o
™
™
Vi e
Vi e

Context Broker GE

——

Monitoring Collector

Monioring Probe

NGSI Adapter

Host

——

Monitaring Probe

_images/Monitoring_GE_probe_parser_class_hierarchy.png
lib.parsers.common.base

parser

Iib parsers myProbe

parser

[iparserequestl)
leetcontentnttsy

_static/down-pressed.png

_images/Monitoring_IO_Flows.png
Pub/Sub Context Broker GE @

POST

Parser

Probe.

Physical host

Notification
v

Connector

P

NGSI Adapter

